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As a sequel of part I (Kothari ef al. 2018 Proc. R. Soc. A
474, 20180054), we present a general thermodynamic
framework of flexoelectric constitutive laws for
multi-layered graphene (MLG), and apply these laws
to explain the role of crinkles in peculiar molecular
adsorption characteristics of highly oriented pyrolytic
graphite (HOPG) surfaces. The thermodynamically
consistent constitutive laws lead to a non-local
interaction model of polarization induced by
electromechanical deformation with flexoelectricity—
dielectricity coupling. The non-local model predicts
curvature and polarization localization along crinkle
valleys and ridges very close to those calculated
by density functional theory (DFT). Our analysis
reveals that the non-local model can be reduced to a
simplified uc-local or e-local model (Kothari ef al. 2018
Proc. R. Soc. A 474, 20180054) only when the curvature
distribution is uniform or highly localized. For the
non-local model, we calibrated and formulated the
layer-number-dependent dielectric and intrinsic
flexoelectric coefficients of MLGs. In addition, we
also obtained layer-number dependent flexoelectric
coefficients for uc-local and e-local models. Our DFT
analysis shows that polarization-induced adsorption
of neutral molecules at crinkle ridges depends on
the molecular weight of the molecule. Furthermore,
our detailed study of polarization localization
in graphene crinkles enables us to understand
previously unexplained self-organized adsorption of
Cgo buckyballs in a linear array on an HOPG surface.

1. Introduction

This paper is a sequel of Critical curvature localization
in graphene. I. Quantum flexoelectricity effect [1].
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In part I, we used a specific constitutive relation, e-local model, for flexoelectricity of graphene to
understand a peculiar localization mode, crinkle, in graphene. Here, our interest is in the self-
consistent description of flexoelectricity in multi-layered structures in the context of coupling
between flexoelectricity and dielectricity for general two-dimensional layered materials, and
extraction of associated material properties from DFT calculations. To this end, in the current
work, we derive an appropriate free-energy potential for flexoelectric modelling consistent with
the thermodynamic framework and apply such framework for modelling electromechanical
deformation of two-dimensional layered materials with a field-of-view resolution in nanometre
scale. As a consequence, we can characterize and control not only flexoelectric polarizations
but also Fermi and Landau levels near crinkle ridges where the layers are highly curved, as
well as over flat wings of the crinkles where layer stacking is uniformly sheared. Discovery,
characterization and control of crinkles in emerging two-dimensional materials are expected to
open up diverse applications in electronics and photonics, and biology and medicine through
self-assembly and pattern control of novel nanostructures [2,3].

Some of the early theoretical studies on flexoelectricity of crystals was reported by Mashkevich
[4] and Kogan [5]. A phenomenological constitutive law was postulated by Kogan [5] for bulk
polarization density, P;, in non-piezoelectric materials,

Pi= xiiEj + Bijia(Ve)iu, (1.1

where x;j represents electric susceptibility tensor, E; electric field, ;i flexoelectricity tensor and
(Ve)jx strain gradient. In more recent works on continuum modelling of flexoelectricity and
general electromechanical formulation [6-9], the constitutive relation is derived in a context of
internal free energy (F) formulation. In their work, the total internal free energy is described as a
functional of displacement, u, the bulk polarization density, P and the scalar electric potential, &,
as
Flu, P] :J W, P]d2 +J D \ve2av, (1.2)
o) R 2
where W represents a free-energy density defined only in the volume of the material £2 in the
deformed configuration, while R3 denotes the entire space.

In the absence of free charges, (1.2) can be further reduced to a thermodynamically consistent
constitutive relation of a local differential-type material behaviour. Then, the internal energy per unit
volume, U, is expressed in terms of fundamental work-conjugate displacement variables—strain,
strain gradient and electric displacement, {e, Ve, D}—of stress, couple stress and the electric field,
{0, m, E}. The internal energy is explicitly expressed as

&
J U(e, Vs,D)dV:J J ode dS2 +J
R3 Q

Ve
J mdVe d2 + J
0 2

D
J EdDdV, (1.3)
0 R3

0

where all the products on the right-hand side are scalar products. Then, this expression leads to

constitutive relations,

ol
(¢, Ve, D)= —, (1.4)
an

where t represents the set of variables {¢,m, E} and 7 the set {&, Ve, D}. In the linear-response range
of the constitutive relation, (1.4), the internal energy has a quadratic form,

1

where Q represents symmetric electromechanical-property coefficients. Q comprises six sets of
material properties in the most general case. For a non-piezoelectric material, ignoring the strain-
gradient effect on mechanical stress, the coefficient set Q reduces to four sets that correspond
to stress/strain stiffness, couple-stress/strain-gradient stiffness, inverse electric permittivity and
flexoelectric coefficients, respectively. However, the total number of coefficients in Q is too
large to be practical for measurement in highly anisotropic materials and/or two-dimensional
layered materials. On the other hand, when we consider deformation of a two-dimensional
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layered structure like multilayer graphene (MLG), the electromechanical deformation is primarily
composed of distinct modes, such as interlayer shear and individual layer bending, and often
localizes at a narrow band of nanometre-scale width. Therefore, it is more practical to treat the
internal energy as those of individual layers described with the framework of (1.5) and those of
interlayer deformation.

For modelling developable deformation mode of two-dimensional layered structures, the
stretch is decoupled from bending in the internal energy per unit area of the individual layer, Uy,.
The decoupling reduces Q to its two-dimensional analogue Q(>p), leading to four coefficients for
developable deformation:

1

2
s (1.6)

Uqyle, k, D] = %Y(D)gz * %QiD)"Z +8PD +
where, ¢ denotes the stretching strain and « the curvature of the layer, while YD), QiD), BPand
1/¢®) are the components of Q(>py. Employing Legendre transform [10] for variable change from
D to P, and noting that D =¢gE + P, we define a new free-energy potential ¢y =¢()le, «, P].
The transformation enables us to exclude the domain integral over R3\£2 in evaluating the total
free energy of the system with the vanishing electric field at infinity, which makes computational
analysis simpler. The transformed free-energy potential is expressed as

1

€0 2 P2, L) 2 a0 2
(f)(L)[S,K,P] = U(L)[&‘,K,D] — EE = EY( )e + EQb K +/3( )KP—|— 2X(P)P , (1.7a)
and the corresponding constitutive relations are given by (1.4) to have
1
{a =Y®e,m=Qk + pOP,E=pPu + WP} , (1.7b)
X

where YO, Qép), B ®) and 1 / X(P )are the coefficients for {¢, k, P}-based description.
Specializing for the case of graphene, we employ inextensibility of the layer as a limiting
approximation which drops e-dependence of ¢(;) and o in (1.7a and b), and rearrange (1.7b-3)

to get
Vv

1v3=aE+ﬁ/c. (1.8)

\ Vv
Here () denotes the component normal to graphene layer, P the polarization density per unit

Vv
area, o the two-dimensional atomic-layer polarizability of graphene, E the point exclusive electric
field that includes the field generated by polarization elsewhere and g = —B®P) % P) the two-

dimensional flexoelectric coefficient. The point exclusive description of IVE in (1.8) represents
non-local flexoelectricity—dielectricity coupling in graphene. For the rest of the paper, we make
use of (1.8) as the constitutive law of non-local flexoelectric polarization coupled with dielectric
polarization. However, this formulation makes the polarization-induced electric field singular,
and the singularity is typically regulated by the cut-off radius technique discussed in [1,11].
Note that while Clausius-Mossotti relationship expresses the electric susceptibility, x, of a
material in terms of the atomic polarizability, o*, of the constituent atoms for a bulk formulation,
for modelling two-dimensional layered materials like graphene, we employ (1.8) in terms of
atomic-layer polarizability per unit area, «.

The organization of the paper is as follows: in §2, we discuss the reduced models of
flexoelectricity and the importance of flexoelectricity—dielectricity coupling. The analysis of the
non-local model is presented in §3 followed by DFT studies on adsorption of molecules on
crinkles in §4. We discuss the implications of the non-locality in §5 and subsequently conclude
by summarizing and proposing future directions in §6.

2. Flexoelectricity models

As aforementioned, in this paper, we focus on flexoelectricity in MLG. We recently reported
[1,12] the discovery of a new subcritical buckling mode of MLG which shows high curvature
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localization. DFT studies indicated that the curvature of the crinkle mode remains focused in
a very narrow band of width 0.86nm which remains fixed even as the amplitude of the mode
increases. There, a reduced model of flexoelectricity that lumps together the flexoelectric and
dielectric effects was presented. The model predicted crinkle formation with peak curvatures
approximately 0.15nm™! and peak polarization density approximately 0.11e nm~! for a 3° end
angle, leading to a concentration of static electric charges at the crinkle ridges and valleys on the
free surface. However, the peak polarization density was found to be significantly higher than that
predicted by the single-layer flexoelectric constant of uniform curvature [13]. In order to address
the apparent multitude of flexoelectric constants, we develop a model including flexoelectricity—
dielectricity coupling consistent with the thermodynamic framework. This model is inherently
non-local because the flexoelectric and dielectric polarization interact and influence each other. In
this section, we discuss two reduced models of quantum flexoelectricity in graphene and lay the
background for a general model.

(a) Reduced constitutive models of flexoelectricity

Figure 1a(i) depicts the configuration (grey curve), curvature distribution (solid line) and
polarization distribution (dash-dot line) in a uniformly bent graphene layer. The polarization
is proportional to curvature, and the proportionality constant is called the two-dimensional
uniform curvature flexoelectric constant ). Kalinin & Meunier [13] evaluated ﬂ((lu)c) ~0.11e with
first-principle calculations, naming it as a quantum flexoelectric coefficient, for

4
P=84k, 1)
where the subscript of ﬁ((f)c)indicates a single layer. Here, we call (2.1) the uc-local model.

On the other hand, for a much more complex non-uniform bending, the above model
falls short. Figure 1la(ii) illustrates non-uniform distributions of configuration, curvature and
polarization near a crinkle ridge, indicating that polarization is under-predicted by the uc-local
model. Calibration with the DFT analysis of crinkles [1] yields an effective flexoelectric constant
of an MLG crinkle ridge as ﬁ(*Zl) =0.75%, which is 6.9 times ,B(ql)c), for

1V3=ﬁ*:<. (2.2)

Here, /3(*21) stands for average flexoelectric constant of an individual layer in 21-layer graphene
for modelling with an inextensible-layer limit. In part I [1], we employed the reduced model (2.2)
without explicit involvement of dielectric constant « like in (1.8). The lumping of the inherent non-
locality in the flexoelectricity—dielectricity coupling into a local constitutive relationship is exact
for uniform curvature distribution while it is an approximation for the crinkle problem. However,
in general, the reduced models do not work for an arbitrary non-uniform curvature distribution
and therefore, a more detailed explicit treatment of dielectricity is undertaken in the following
sections.

(b) Flexoelectricity—dielectricity coupling

MLG is anisotropic in its response to electric field. It acts as an in-plane conductor at finite
temperature and as a dielectric in the direction normal to the lattice layer. A full treatment of
flexoelectricity for general curvature distribution involves long range dipole-dipole interactions
through electric fields generated by the polarization distribution, leading to flexoelectricity—
dielectricity coupling in the normal direction (1.8).

Figure 1b(i-iv) illustrate flexoelectricity—dielectricity coupling mechanisms in dipole—dipole
interactions near a crinkle ridge of MLG, based on the curvature distribution obtained by DFT in
[1]. Figure 1b(i) shows the net polarization (blue arrows) developed in a crinkle boundary layer.
Owing to curvature reversal, we get regions of positive and negative net polarization. This picture
does not take into account any dielectric interactions explicitly. To uncouple flexoelectricity and
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a(i) A a(ii) A

v intrinsic flexoelectric polarization % P-type polarization
' net polarization Tl non-local electric field N-type polarization
c(i) c(ii)
P-type N-type s

Figure 1. (a(i)) Polarization distribution for a uniform curvature case; (ii) polarization distribution for a crinkle curvature
distribution; (b(i)) overall picture of the polarization on the layer, curvature reversal causes polarization reversal; (i) in the
intralayer case, electric fields amplify the anti-parallel polarization and (iii) diminish the parallel polarization; (iv) interlayer
interactions amplify the parallel polarization.

dielectricity effects, we show the intrinsic flexoelectric polarization and the associated electric
fields in figure 1b(ii). Bending of graphene creates a curvature which breaks the symmetry in the
electron cloud distribution in graphene. This separation of positive and negative charge centres
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in graphene produces a polarization, which we refer to as the intrinsic flexoelectric polarization
(black arrows). The intrinsic polarization thus developed, produce electric fields which influence
the polarization in their neighbourhood—either amplifying it (figure 1b(ii)) or weakening it
(figure 1b(iii)). The combined effect leads to the net polarization. As illustrated for the intralayer
case, the interlayer interactions follow a similar interaction mechanism (figure 1b(iv)). Note that
the size of the blue arrow is larger than a black arrow in figure 1b(ii) and smaller in figure 1b(iii),
indicating the amplifying and weakening effects, respectively. Within the layer, anti-parallel
dipoles reinforce each other because the additional dielectric polarization points in the same
direction as the intrinsic flexoelectric polarization. By contrast, the parallel dipoles weaken each
other because the dielectric polarization points opposite to the intrinsic flexoelectric polarization.
Similarly, in figure 1b(iv), the blue arrows are larger because parallel dipoles reinforce each other
in the interlayer setting. This is why crinkles, because of the signature curvature reversal, show a
much larger ;‘3(*21) in comparison to ﬁ(l)) Depending on the parity of bending, the flexoelectric
charges developed on the surface can be positive or negative, as illustrated in figure 1c(i,ii).
Following the nomenclature introduced in [12], the positively charged crinkle is called P-type
and the negatively charged, N-type crinkle.

3. Analysis of the non-local flexoelectric model

(@) Formulation

In this section, we employ the non-local flexoelectricity—dielectricity coupling in the buckling and
post-buckling analysis of suspended MLG in a plane-strain setting. We consider the set-up in [1],
with N-layer MLG, interlayer spacing 2 =0.34nm and total length 2Ly. The bending stiffness of
each layer in the {«, P}-based description is denoted as sz) and the interlayer shear modulus

is u. For the nano-structural model, we make use of DFT-evaluated material properties, Qép) =
1.0eV [14], and u =4 GPa [15]. The atomic polarizability of graphene is reported in the literature
to be a* ~0.85 A3 [16,17]. Following the same kinematic assumptions as [1], the layers deform
identically and are inextensible. Under these assumptions, the total free-energy potential @ as
defined in (1.7a), can be given as the sum of mechanical and electrostatic parts. The mechanical
part, @ yech, has two contributions, namely the bending of individual layers and interlayer shear.

Lo (P)N 2 _
Prnech = J Qbf <d£) + MtaHZQ ds, (3.1)
—Lo 2 ds 2

where 6(s) is the slope angle and x =d6 /ds is the curvature of the layer.
The electrostatic part, @elec, is given as

Z > J J  Bon) by (L B2, S N AG, ') & B, S}y s

lec
2”E<N> =1 m=1 [{x(5m) — X"} + (¥(sn) — y(&'m)PT
(3.2a)
A(sn, $'m) = cos{0(sn) + 0(s'm)—(x(sn) — x(5'm)}* + (y(sn) — y(s'm)¥]
B(sn, 8 m) = 2sin{0(sy) + 0('m)} - {x(sn) — x(s’ m)Hy(sn) — y(s m)} (3.2b)

1 ¢ _d
Lh(sn,s/n):{z’ orlon =sul=10. (3.20)

1, forls, —s'y| <o

where rq is the cut-off radius of the interaction integration and m, n are indices for the layers
whose interaction is being counted.
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\2 Vv
The electric field, E, resulting from any arbitrary polarization distribution, P, over N layers of
graphene can be expressed as a linear operation on polarization,
N L ’ / /
v 1 0 v 1-6 , A(sy, B(sy,
E(S/ ZJ p ){ mnq(8n, S,)HA(Sn, s3,) + B(su, sp,)}

m) = (sn
2N AT Lo [(x(sn) — x(s)) + (Y(m) — y(sp) 2T

ds;, (3.3a)

A(sn, 8'm) = 0s{O(s) + 6 m)—{x(sn) — X(5'm)}> + (sn) — y(s'm))’]

B(sn, 8'm) = 2sin{0(sy) + O(5'm)} - {x(5n) — x(s/m)}{]/(sn) - ]/(S,m)}r (3.3b)
0, forls;j—¢s'i|>rg
d L5 = U , 3.3
an 715:5) {1, for [s; —s';| <o (339

where s is the arclength parameter, 6(s) the slope angle of the layers, m the index of the layer
where the electric field is being calculated, ry the cut-off radius and index n sums over all the

Vv
layers. Combining (3.3a) with the non-local constitutive relation (1.8), we express P as a function
of the shape of the layer as

vV
Lo[P] = Bk, (3.4)
where/; is a linear operator.
Thus, (3.1), (3.2) and (3.4) complete the formulation of the minimization problem in terms of
total potential energy I7[0] where

Lo

IT[0] = Prech + Pelec — J L f(1 —cosf)ds, (3.5)

and f is the constraint force necessary to maintain the configuration. The functional I7[0(s)] can
then be numerically minimized to obtain the post-buckling configuration of MLG. Figure 2 shows
the collection of results for a 21-layer, 15nm long MLG. Cut-off radius for the calculation, rp, was
chosen to be 0.14 nm which is approximately the same as the lattice parameter of graphene. The
intrinsic flexoelectric constant was obtained by calibration of a numerical model with DFT. This
calibration was done by best fitting a single case (6, = 3°) to the DFT results of [1]. The value of
intrinsic flexoelectric constant, ,3((;3, was obtained to be approximately 0.733e.

Comparison of peak curvatures predicted by the non-local model to DFT results in figure 2a(i)
shows a good agreement for different end angles. In the post-buckling evolution, the crinkle
mode shape is found to remain the same while the amplitude increases with the end angle, thus
explaining the observed linear trend in the peak curvatures. Figure 2a(i) inset shows the localized
curvature distribution with the fast-decaying oscillating tail. The distance between the closest
inflection points on either side of origin is treated as a measure of localization—the curvature
focusing band width—and it is found to be approximately 0.86 nm, agreeing well with the DFT
findings. Figure 2a(ii) shows the peak polarization density comparison between the uc-local
model and the non-local flexoelectric model. As explained in §2a and §2b, the uc-local model
is found to severely under-predict the peak curvature compared with the non-local model which
predicts about 6.9 times higher peak polarization values than the uc-local model. This remarkable
difference between the two models is due to the inadequacy of the uc-local model in accounting
for flexoelectricity—dielectricity coupling. The inset shows the distribution of polarization density
for three different end angles. The mode shape of the polarization distribution nearly remains the
same and is only scaled by the amplitude that is dependent on the end angle practically in a linear
fashion.

(b) Effect of dielectricity

Figure 2b(i,ii) highlights the difference between e-local model and non-local model results. As
discussed in the §2b, for a localized and oscillating curvature distribution, the flexoelectric—
dielectric coupling reinforces the curvature peaks and valley, amplifying the polarization. Thus,
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Figure 2. (a(i)) Peak curvature comparison between non-local model and DFT results; ((i) inset) curvature distribution for 21-
layer 15 nm sample; (ii) peak polarization density comparison between non-local and uc-local model; ((ii) inset) polarization
density distribution for 21-layer 15 nm sample; (b(i)) Comparison between e-local and non-local model curvature distribution
and (ii) polarization density distribution highlighting the differences.

in order to understand the difference between the e-local model and non-local model, we look
closely at the curvature valley in figure 2b(i) (inset shows the blown-up view). The non-local
model has deeper curvature valley because the oscillating polarization in the neighbouring
regions contributes to amplify the net polarization which further enhances curvature localization.
The peak curvatures of the non-local model are calibrated to match the peak curvatures of DFT
results, so they do not show this variation at the peak. Similarly, the figure 2b(ii) shows the deeper
valleys in polarization plot. This deeper polarization reversal provides an even lower energetic
state due to attractive interactions between the dipoles. The e-local model, due to the lumping
of dielectric and flexoelectric effects into a single term, misses out on this detail. The difference
between the e-local model and non-local model is subtle here, as it should be, because the e-local
model has been shown to work well for modelling crinkles. However, for modelling a general
non-uniform curvature distribution, the reduced models—uc-local and the e-local model—may
not work well and the non-local model must be applied.

4. Flexoelectric polarization and molecular adsorption

Figure 3a(i) shows a comparison between polarization distributions predicted by the non-
local model and the DFT analysis. The comparison is made through width-dependent mean
polarization density, P(x), near a crinkle ridge up to 4 nm width. Here, P(x) is defined as

_ 1 rx
P(x>=ﬂj_ PE)de, 1)

where P(£) is the polarization density at § measured from the maximum or minimum point of
polarization for a crinkle valley or a ridge, respectively. For the cases considered for comparison—
1.8" and 3” end angle of the crinkle—we find good agreement between the DFT and the non-local
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Figure 3. (a) Mean polarization density comparison between non-local model and DFT results; (b(i)) Buckyball adsorption on
HOPG [12]; ((i) inset) higher resolution image showing the periodicity of buckyballs on HOPG [18]; (ii) Schematic of buckyballs
on crinkle ridge; (iii) Potential energy of the system as a function of inter-buckyball spacing /.

model results for most of the width of averaging, x, except for x close to cut-off radius, as expected.
The continuum model interpretation starts to break down for x comparable to the cut-off radius.
The peculiar oscillations seen in the DFT mean polarization density can be attributed to the
averaging scheme of polarization with the reciprocal space wave function for x in the real space
not aligned with periodic atomic locations with the Bader method [19,20].

The flexoelectric polarization leads to the development of surface line charges along the
crinkle valleys and ridges. The ridges are negatively charged, while the valleys are positively
charged, to produce N-type and P-type crinkles respectively. The apparent line charges can cause
preferential adsorption of molecules. A very striking manifestation of the line charges can be seen
in adsorption of buckyballs along crinkle valleys in highly oriented pyrolytic graphite (HOPG).
Buckyballs (Cgp) are highly polarizable dielectric molecules. In the presence of strong enough
external field, dielectrically polarized buckyballs are attracted to the field source. Figure 3b(i)
shows buckyballs sprinkled over an HOPG surface. Instead of arranging themselves in clusters
as the minimum energy state of buckyballs in absence of external electric field, they choose
to align themselves in relatively long straight line segments with clear spacing and distinct
directional preference to their arrangement [12]. A similar finding was previously reported in [18]
(figure 3b(i) inset). In the higher resolution inset picture, we see that the inter-buckyball spacing is
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approximately 2.5 nm. Here, we consider a simple model of a line charge that induces a dielectric
dipole in every buckyball and aligns the electrically polarized buckyballs with a spacing distance
[. The dipole arm length is denoted d, and the distance between the buckyball and the line charge
as shown in figure 3b(ii). The dipoles are attracted to the line charge of the crinkle valleys or ridges
by the electric field gradient. The attraction potential per unit length of the line charge is inversely
proportional to the inter-spacing distance I. This apparent aggregation attraction is balanced
with inter-dipole repulsions. Expression of the net buckyball-interaction potential is derived in
appendix A. Figure 3b(iii) shows a plot for the potential energy as a function of the spacing I. The
energy minimum is attained at / ~2nm with rough estimations of / and d, which is in relatively
close agreement with the experimental observation. Thus, the alignment of buckyballs on the
HOPG surface can be explained by the existence of crinkles and the resulting flexoelectric surface-
charge concentrations along the valleys and ridges. Our simulation shows the alignment of the
buckyballs along the valleys of the crinkles is more stable than along the ridges. In addition, we
analysed adsorption potentials of H> and O, molecules with DFT. The adsorption potentials of H>
and O; increase approximately 20 eV and approximately 30 eV at the crinkle ridge, respectively,
which represents 11-12% increase over the adsorption on a flat HOPG surface.

5. Discussion

(@) From non-local model to reduced models

Having established the mathematical formalism for the non-local model, we employ this
development to concretely derive the two reduced models discussed in §2 from this general
model.

We first consider a uniformly bent single layer of graphene. The curvature is assumed to be
small enough that the layer can be assumed straight for calculation purposes. From the symmetry

4
of the problem and assuming Lo > rg, polarization density of the single layer, Py, is constant
everywhere. Under these assumptions, equation (3.3) reduces to

v LO v / / /
Es) =J bz =), 5.1)
0

where gq1)(s —8') = —1/2meyq1(s,8")/{( x(s) — x(s’ )}?). Performing the integration, we get that
I%(l) = —IVJ(D/ (meyro) where rq is the cut-off radius. Plugging back into the constitutive relation

and simplifying we get the linear operator £2[Iv3(1)] ={1+a/(r 6(1)r0)}1v3(1). In other words,

(in)

M (uc) w~
= = —-—-—-———---- 5.2
Py :3(1) K 1+ a/(Temro) (5.2)

The coefficient, ﬁ((ir;) /{1 +a/(wemyro)}, is referred to as the ‘flexoelectric constant” in Kalinin
& Meunier [13]. Note that in the current study, the intrinsic flexoelectric constant for single-layer

graphene is not known. However, the above equation provides a way to evaluate ﬂ((ir)l) =0.16e for

ﬁ((f)c) = 0.11e. The uniform curvature limit, thus leads to a very simplified dependence of electric
field on the polarization and this allows the reduction of the £; linear operation to just a pre-
factor. The reduction in ) value as compared to the intrinsic flexoelectric constant is due to the
weakening effect of dielectric polarization on intrinsic polarization as discussed in §2b.

For a highly localized curvature distribution like the crinkle, we expect that the general
model also reduces to an e-local model approximately. To this end, we design a calibration test
for computational brevity. We choose the following function to represent the crinkle curvature
distribution.

Ktest(X; 1) = kg cos ke K%, (5.3)
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Figure 4. (a(i)) Calibration curve for 8* as function of wavelength; (ii) Evolution of the flexoelectric coefficients and relative
permittivity with the number of layers V.

with k=27 /A, for a parameter 2, as it resembles the curvature distribution of the crinkle—highly
localized and oscillatory. The peak curvature, period and decay length of the test-function can
be tuned independently. In this calculation, we calibrate the peak curvature «, the wavelength A
and the decay-length parameter a of a test-function to match the peak curvature of the 3° crinkle.
From the curvature distribution and employing equation (3.3), we calculate the net polarization.
In the e-local approximation, the net polarization and curvature are proportional and related by
the effective flexoelectric constant. Denoting the ratio of the calculated peak polarization and
peak curvature by g*, we plot the results in figure 4a(i) as a function of the wavelength A of
the test-function. The results are shown for a 21-layered, 15nm long MLG specimen. Results
show, that for test-function with the same wavelength as the crinkle curvature distribution i.e.
A/4~ 0.6 nm, the effective flexoelectric constant is ~6.89 ﬁ((il)c). This is in agreement with the e-local
model. The results indicate that e-local model, obtained as a limiting case of the general model
with flexoelectricity-dielectricity coupling, is a good approximation. We note that the figure 4a(i)
remains insensitive to the amplitude of the test-function and thus is a universal calibration curve
for any crinkle angle.

The oscillatory nature of the curvature distribution enhances the intrinsic flexoelectric
polarization by augmenting it with the dielectric polarization. The invariance in the shape of
distribution, as discussed in [1] ensures that the polarization and curvature scale linearly with the
end angle (figure 2a(i,ii)), thereby reducing equation (1.8) to the e-local model,

P=p*. (5.4)

(b) Layer dependence of properties

The dielectric properties of graphene are known to be dependent on the number of layers
and the location of the layer in MLG. The microscopic picture of electrical interactions in
the layers is sensitive to the number of layers and the location, and thus the dielectric and
flexoelectric properties over the number of layers are layer-number dependent. Regarding
dielectric properties of few layer graphene, Santos ef al. [21] showed with DFT analysis that
relative permittivity increases nearly linearly with the electric field for small electric fields.
Hotta et al. [22] report that the bulk relative permittivity, €,, of graphite is approximately 30.
Figure 4a(ii) inset shows an exponential interpolation of the relative permittivity, €,y =€) +
(€r(o0) — €rai1 — e~ SIN=D/lerne =)}, with S =dey(ny/dN at N=1, that depends on the number
of layer N, and fits both the few layer and bulk limit. Now, our interest is in flexoelectric
coefficients that depend on the number of layers. Qualitatively, increasing the number of layers
raises attractive interlayer interactions that lower the potential energy in the crinkle morphology.
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Thus, the effective flexoelectric coefficient should increase. Similarly, the interlayer attractive
interaction intensifies with an increasing number of layers for uniformly curved MLG as well,
and the uniform curvature flexoelectric coefficient is also expected to increase. To calculate the
layer-number-dependent behaviour of flexoelectric coefficients, we first evaluate the intrinsic
flexoelectric coefficient, ﬂ((in)), for various number of layers by iterating the coefficient value
until the peak curvature of the non-local model matches that obtained by the DFT analysis for
a 3° end angle case. The coefficient 18(11\111 ) is shown in figure 4a(ii). Once we have the intrinsic
flexoelectric constant, we evaluate £; in (3.4) for uniform curvature distribution to obtain the
uc-local flexoelectric coefficient ﬁ((;\lg). Figure 4a(ii) shows that the coefficient ﬁ((;\lg) also increases
with the number of layers and saturates to a bulk value. Lastly, the e-local flexoelectric coefficient,
/3(";\]), can be simply obtained by the ratio of the peak polarization to the peak curvature. The
coefficient '3(*1\1) increases with the number of layers and saturates to a bulk value. As discussed

in §2b, we find that g*> g > (U9 In summary, our fitting yields the following expressions
for flexoelectric coefficients: '3(*N) =7.235 — 6.841¢0-1377N., ’3((]1\1;)) —7.052 — 6.357¢0-1266N. ﬁ((fﬁ) _
7.046 — 6.817¢01205N; ¢ ) =30 — 28.8594¢~0-0333N

6. Conclusion

1. We investigate the thermodynamically motivated constitutive law for flexoelectricity in
graphene. The coupling of dielectricity and flexoelectricity is quantitatively analysed
with the thermodynamic framework, while the coupling mechanisms are qualitatively
elucidated. We unify the framework for the existing disparate models in uniform
curvature and highly localized regimes.

2. We propose a mathematical formulation for modelling electromechanics in two-
dimensional layered materials. While the existing approach in the literature
predominantly employs Maxwell’s electric field-based continuum framework, we apply
Legendre transformation of the Maxwell’s free-energy potential to another polarization-
based one that allows us to construct a free-energy potential for two-dimensional
layered materials. Our energetic modelling of the two-dimensional materials with the
transformed potential provides computational advantages where the problem can be
reduced from solving field quantities for entire space to analysing non-local polarization
interactions just over the layers.

3. The non-local model applied to 21 layer, 15nm span graphene sample produces highly
localized curvature distribution, a signature of the crinkle mode of buckling. These results
are in close agreement with DFT and e-local model predictions. The curvature focusing
band width is found to be approximately 0.86 nm.

4. We observe notable effects of constitutive non-locality in non-uniform curvature
and polarization distributions. In crinkles, the coupling enhances curvature reversal,
consequently amplifying the polarization reversal as well. The e-local model lumps this
constitutive non-locality into one single parameter and therefore misses out on this detail.

5. The flexoelectric polarization near the crinkle ridge, predicted by our non-local model,
is found to match with DFT results. The manifestation of flexoelectric crinkle charges
is observed in the form of buckyballs aligning in a straight line on an HOPG surface.
Our simplified model of buckyball adsorption along a line charge is able to capture the
underlying physics of the process. We believe that crinkle polarization is a significant
outcome which can have far reaching implications in manipulating charged and
polarizable molecules.

6. Our DFT analysis shows that enhancement in adsorption of neutral molecules at crinkle
ridges depends on the molecular weight and possibly geometry of the molecule as
well. The change of physical binding energy of H, and O, molecules on the crinkle
surface is found to be approximately 20 eV and approximately 30 eV respectively, which
is approximately 11-12% of the total binding energy.
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7. We show that the non-local model is reducible to the uc-local and the e-local models [1].
Our calibration test reveals that the e-local model is accurate enough when the curvature
is highly localized like in crinkles, while the uc-local is exact in the limit of uniform
curvature distribution.

8. We investigate the layer-number dependence of flexoelectric coefficients and find that the
flexoelectric coefficients increase with number of layers and saturate to a bulk value.

9. For an experimental verification of our analytical results, measurement of the
approximately 1nm band width of the crinkle ridge is non-trivial due to the localized
surface line charge; however, we could measure the width down to 1.76 nm with an
atomic lattice interferometry [23]. For another experimental verification, the electric
line charge could be indirectly revealed by linear adsorption of buckyballs as cited in
figure 3b(i) [12]. It would be desirable to directly measure the line charge density within
approximately 1nm band width with further improvements in resolution of currently
available experimental techniques.

10. The flexoelectricity—dielectricity coupling in graphene crinkles can selectively adsorb
charged or polarizable molecules in a linear array, and the adsorption characteristics can
be developed as a strain-controlled ‘molecular zipper’. In addition, as fractional stacking
shift and twist [24] of two-dimensional material layers are considered to provide diverse
electronic and optical properties, mechanics of crinkles is expected to provide means to
study novel properties of stacking-controlled two-dimensional materials.
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Appendix A. Inter C¢q Spacing on crinkle ridge

The potential energy of the buckyballs on a crinkle ridge or valley (figure 3b(ii)) per unit spacing
can be formulated as,

o 1

1 1 1 = (1 1
N=— J — dx + —20? o). (A1
vo 4mel Q7 o0 \/(h+d)2+x2 V2 + 2 T dwel Q ;(:l /d2+i2l2> AD

Simplifying (A 1) gives

o() Admey(l) -29/Q. (h+d) 21 1
@@ 1 oy e\t ) 2
i=1 d/i” +1

The function @(I) can now be minimized to find the optimal inter-buckyball spacing. We
assume qd/Q=0.5, h=d =1 nm for this calculation, and ®(J) is plotted in figure 3b(iii).
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