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Here, we report the discovery of a new, curvature-
localizing, subcritical buckling mode that produces
shallow-kink corrugation in multi-layer graphene.
Our density functional theory (DFT) analysis reveals
the mode configuration—an approximately 2 nm wide
boundary layer of highly localized curvature that
connects two regions of uniformly but oppositely
sheared stacks of flat atomic sheets. The kink angle
between the two regions is limited to a few degrees,
ensuring elastic deformation. By contrast, a purely
mechanical model of sandwich structures shows
progressive supercritical curvature localization spread
over a 50-100 nm wide boundary layer. Our effective-
locality model of electromechanics reveals that
coupling between atomic-layer curvature and electric-
charge polarization, i.e. quantum flexoelectricity, leads
to emergence of a boundary layer in which curvature
is focused primarily within a 0.86nm fixed band
width. Both DFT and the model analyses show
focused distributions of curvature and polarization
exhibiting oscillating decay within the approximately
2nm wide boundary layer. The results show that
dipole-dipole interaction lowers the potential energy
with such a distribution. Furthermore, this model
predicts peak-polarization density approximately 0.12
e"nm~! for 3° tilt angle. This high polarization
concentration can be controlled by macroscopic
deformation and is expected to be useful in studies
of selective graphene-surface functionalization for
various applications.
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1. Introduction

In this paper, we report discovery of peculiar curvature localization in graphene at the nanoscale,
that produces unprecedented class of surface corrugation—the quantum flexoelectric crinkle.
To this end, we begin with reviewing historical observations and current understanding of
graphene corrugation. Recently, it has been reported that single-layer graphene (SLG) and few-
layer graphene (FLG) exhibit characteristic dynamic ripples as well as static corrugations when
suspended [1,2]. Regarding the dynamic ripples, Meyer et al. [1] studied dynamic morphologies
of suspended SLG sheets, analysing broadening of transmission electron microscope (TEM)
electron beam diffraction, and concluded that suspended SLG sheets are not perfectly flat.
Instead, the sheets ripple with a prevailing wavelength (<25nm) at a frequency of tens of GHz
[1,2]. They explained that the characteristic rippling is caused by two competing mechanisms.
One is thermally excited diverging amplitude of long-wavelength ripples that would lead to
crumpling [3-5], and the other is a coupling between bending and stretching in 2D rippling
that stabilizes the layer against crumpling [6]. In addition to dynamic rippling, the time-average
configuration of fluctuating ripples, i.e. the static configuration, of a suspended FLG is not
flat either. Meyer et al. [1] also presented a real-space TEM static image of FLG hexagonal-
lattices, the visibility of which strongly depended on their tilt angle. The FLG image showed
static corrugation with characteristic size somewhat smaller than the characteristic SLG ripple
size. Regarding corrugation of general multi-layer graphene (MLG) or graphite, Ohler et al. [7]
reported an X-ray diffraction topographic study of highly oriented pyrolytic graphite (HOPG).
This showed crystallographic X-ray peak spreading of the Cu-Ku rocking curve, which represents
‘mosaic spread’—a non-uniformity measure of atomic-layer parallelism. The mosaic spread of
MLG corresponds to discrete tilt-angle variation, up to £3.5°, among zones of flat atomic layers
that range from tens of nanometres to a few microns, in contrast to smooth wrinkles of SLG [8].

From the prior observational results, two major questions arise; what are the conditions of
elastostatic graphene deformation to yield smooth ripples versus corrugated flat-zone segments?
And, are there lower-energy modes than the harmonic modes? To answer these questions, we start
with a benchmark experiment. Figure 1a and b show schematics of the suspended-MLG buckling
in the experiment. At first, we consider a bilayer graphene to understand major mechanisms
of the MLG buckling. We model the bilayer with weak van der Waals interlayer coupling as
a sandwich structure to determine the purely mechanical behaviour without electromechanical
coupling. Elastic buckling of sandwich structures has been well studied [9,10], and Hunt ef al.
[10] reported analysis of interactive buckling in sandwich structures among three different eigen
modes of bilayer buckling—snake, hour-glass and overall-bending modes. In this paper, we will call
the shear-snake mode as interlayer-shear mode, ignoring the tilt-snake mode [10], because MLG
has an extreme stiffness ratio (approx. 250) of the intralayer tension to the interlayer shear. In
addition, we find in this paper that the interlayer-shear mode of deformation prevails over the
overall-bending mode in buckling at the nanoscale, unless the structure is extremely slender. If
the sandwich-structure model is employed, the interlayer-shear-mode buckling is expected to
progressively develop a kink configuration as the amplitude grows. The interlayer-shear-mode
evolves from a sinusoidal profile to a symmetric kink-like shape with the ends nearly straight as
shown in figure 1b. However, in our experiment, an MLG directly, i.e. not progressively, buckles
out of plane into a hinge mode, i.e. the shallow symmetric kink shape, as shown in figure 1c. In the
experiment, the assembly of MLG (approx. 200 layers) attached to PMMA grating of 1-um grooves
is compressed up to approximately 0.1% strain to observe the buckling mode of the suspended
MLG with an atomic force microscope (AFM). This remains below the critical symmetric kink
angle of 6°-7° required for the MLG to emit interlayer-sliding van der Waals dislocations from
the kink ridge [11], and deform inelastically.

The overall-bending mode, also known as Euler bending mode [12], grows in amplitude
from an infinitesimal sinusoidal profile of pitchfork bifurcation, progressively to a smooth
post-buckling wrinkle configuration in a supercritical state [13-15]. When a soft-core sandwich
structure attached to a soft substrate or periodically suspended on an elastic substrate is

PS008107 4L ¥ 205§ 20ig BioBuiysigndiaposieforeds;



(@) (©) (d

103F ! T ]
o gmphene _ | Euler-buckling-mode
g g wrinkle
# «F =
F PMMA gratings 3102k ]
Q
s -
Y 2 s
®) d T‘j 107w e crinkle E
a S _§
f— ng(,_ ) «—f -° 1 curvature-focusing band width i
. 0 =6
N layers L |
— 2L 1‘ 10 102

no. atomic layers, N > 2

Figure 1. (a) A schematic of MLG attached to PMMA gratings, buckling under the compressive lateral load F; (b) Geometry
of buckled N-layered MLG crinkle with end-angle 6, (The layers are parallel and characterized by angle 6(s) made with
the horizontal, with s being the arclength.); (c) Atomic force microscopy (AFM) image of MLG crinkle with h =88 nm and
w =T1um; (d) Buckling phase map identifying regions of wrinkle mode and crinkle mode for N-layered MLG of length 2L,
(curvature-focusing band width for flexoelectric crinkle approximately 0.86 nm is marked by the yellow line.). (Online version
in colour.)

compressed, the structure buckles periodically in an interlayer-shear mode. The interlayer-shear
mode of purely mechanical buckling also supercritically develops its post-buckling configuration
from an infinitesimal sinusoidal bifurcation profile [9,10]. The post-buckling configuration
progressively evolves into a series of periodic kinks which we term ‘crinkle ruga’ or simply
‘crinkles’ [16]. Here, we collectively denote all corrugation geometries such as wrinkles, creases,
ridges, folds, crumples and crinkles as ‘rugae’ [17-20]. Figure 1d shows a map of wrinkle versus
crinkle formation depending on the slenderness of the MLG (see appendix A for the analysis).
If the film is extremely slender, i.e. the length is beyond a critical value for a given number of
atomic layers, the MLG develops wrinkles in the overall-bending mode under axial compression.
Otherwise, the MLG develops crinkles. The crinkle, if mechanically modelled as an interlayer-
shear mode, supercritically and progressively focuses its curvature within an evolving band
width (EBW). By contrast, we find in this paper that if the effects of intralayer as well as interlayer
long-range flexoelectric interactions are taken into account, the MLG subcritically buckles into a
hinge mode at the onset of buckling, focusing the curvature within a fixed band width (FBW).
Then, the mode shape remains invariant while the amplitude grows. The FBW is depicted as a
horizontal line near the bottom in figure 14. The FBW thickness is obtained by ab initio calculations
based on quantum density functional theory (DFT) in the following section, and the criticality of
the flexoelectric crinkle formation is analysed in subsequent sections.

Among the critical bifurcations in buckling of sandwich structures, hour-glass mode of
buckling, if excited, would undergo subcritical bifurcation [10]. However, the post-buckling
equilibrium configuration of the hour-glass mode is a relatively high-energy state requiring
substantial axial loading [10]. From the energetics point of view, the potential energy of the
deformed graphene at the nanoscale can be significantly varied through long-range nonlocal
electrostatic interactions among flexoelectric dipoles, besides local strain energy variations.
Graphene is an electrostatically centrosymmetric crystal, and MLG cannot be polarized by
affine deformation, i.e. not piezoelectric. However, symmetry-breaking deformation, i.e. strain
gradients, can polarize graphene by shifting the spatial distribution of the quantum states of
electrons, making the graphene flexoelectric [21-23]. Since graphene is an in-plane conductor
at a finite temperature and sustains static polarization only in the direction normal to the lattice
layer, graphene is statically both dielectric and flexoelectric, in the normal direction. The static
polarization is proportional to the normal component of the point-exclusive external electric field
[24] and the local curvature of the layer. The dielectric constant was evaluated by DFT for SLG in
[25] and FLG in [26], and the overall polarization induced by uniform curvature was provided for
SLG in [27], also by DFT. Since dipole—dipole interaction energy is sensitive to both the interaction
directions and the orientations of the polarizations, in this paper, we are interested in determining
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which flexoelectric mechanisms create the experimentally observed subcritical hinge mode of
crinkle in MLG buckling.

2. Multiphysics buckling models of multi-layer graphene

In this section, we first analyse details of the energetics and stable mode shapes of graphene
buckling with DFT for a relatively short, 13.2619 nm, span. Then, the results are compared with
purely mechanical and electro-mechanical coupling models of MLG crinkles.

(a) Density functional theory analysis of graphene crinkles

We investigate formation and stability of crinkle structures of 1-3 layers of graphene and bulk
graphite using DFT calculations, employing the Vienna ab initio simulation package (VASP) [28]
with the projector augmented wave pseudo-potential [29]. Exchange correlation interactions are
treated within the local density approximation. The energy cutoff for the plane-wave basis set is
set to 375eV throughout the whole calculation, and a k-point grid of 1 x 12 x 1 is used for the
layered graphene supercell of 13.2619 x 0.426 nm® with periodic boundary conditions. A grid of
1 x 12 x 12 k-points is used for the bulk graphite totalling a volume of 13.2619 x 0.426 x 0.68 nm?.
Periodic boundary conditions are used and we set more than 1.5nm vacuum in z-direction to
avoid artificial interaction between layers in different supercell repeated in z-direction. Using the
plane-wave-based total energy minimization [30], the structures were relaxed until the force on
each atom was less than 0.01eV A1

Figure 2a shows the top view of the simulation supercell. The end displacements of the
MLG were constrained but kept free to rotate by setting the lateral (x-direction) length of the
supercell close to the value corresponding to the crinkle angle of interest. Then, the structure was
fully relaxed to the minimum energy configuration through iterative DFT calculations. Figure 2b
shows the post-buckling morphology which compares favourably to the experimentally observed
crinkle configuration (figure 1c). This configuration exhibits a distinct crinkle mode which is
slightly sensitive to the bending direction, depending on whether it is along armchair or zigzag
orientations as seen in the figure 2c. For the bulk simulation, the translational symmetry is
enforced along the thickness direction to make all the layers deform identically. The curvature
as a function of position is given in figure 2d. The curvature is localized within a boundary layer
of approximately 2nm width around the centre and vanishes everywhere else. In the boundary
layer, the curvature is highly concentrated or focused within a band width defined by the two
symmetric inflection points of the curvature distribution closest to the centre. The band width
of curvature focusing, approximately 0.86 nm, is nearly invariant with respect to variations of
the crinkle end angle. The curvature is focused within the FBW even at a very small kink angle,
e.g. 0.1°. The curvature distribution scaled only by the end angle in the FBW implies that the
post-buckling mode of the MLG crinkle is invariant for different end angles. This is in stark
contrast to the Euler buckling mode or the mechanical interlayer-shear mode for which the
curvature is broadly distributed over the length of the graphene layers, and the distribution
evolves progressively as a function of the end angle. Another important feature of the MLG
crinkle configuration is the curvature reversal observed immediately outside of the curvature
focusing band, which is not observed in purely mechanical models of sandwich structures.

We also carried out the calculation with various initial configurations to search for possible
locally stable configurations (i.e. local minima of the total energy). The result shows that the
sine-wave configuration with the period of the supercell length is also a local energy-minimum
configuration. The sinusoidal wrinkle configuration is more stable than the crinkle configuration
for SLG. Surprisingly, the crinkle configuration is also locally stable in SLG for the supercell
span; the stabilizing mechanism is revealed to be flexoelectric dipole-dipole interactions in
following sections. The local energy-minimum characteristics of SLG crinkle is likely an important
aspect of understanding possible dynamic hopping in SLG ripples. For two or more layers
of graphene including graphite, however, the crinkle configuration is more stable than the
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Figure 2. DFT analysis (a—b): (a) Top view of simulation supercell for MLG; (b) side view of buckled MLG—the crinkle mode;
(c) Crinkle slope profile, 6 (x), for different configurations, showing the zones of flat atomic layers; (d) curvature distribution
for different end angles, showing the localization in an approximately 2 nm width around the centre. Nanostructure modelling
(e,f): (e) curvature distribution versus position (left and bottom axes), and EBW versus end angle (right and top axes) from the
purely mechanical model for 21-layered, 100 nm long MLG; (f) curvature distribution versus position (left and bottom axes), and
FBW versus end angle (right and top axes) from the e-local flexoelectric model for 21-layered, 15 nm long MLG. (Online version
in colour.)

sine-wave. Searching from various trial initial configurations, we could not find any other
configuration that is more stable than crinkle under the given boundary condition, which implies
that the crinkle is potentially in static ground state of MLG for the given boundary condition.

(b) Purely mechanical model of multi-layer graphene crinkles

From the DFT analysis presented in §2a, we confirm the existence of a curvature-localizing
mode, crinkle, as the lower-energy mode of graphene buckling, pronounced in MLG. The
mechanism for formation of crinkle, however, is difficult to completely trace with DFT, as it
is computationally very expensive or not possible to simulate larger test cases. To mitigate
these limitations and better understand the crinkling process, we formulate a mechanics-based
model of a crinkle. To identify the dominant mechanism of crinkle formation, in this section,
we first analyse the buckling of elastic layers with weak interlayer-shear coupling without
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electromechanical considerations. For the mechanics-based modelling, we follow the notation
introduced in figure 1b, where we consider N-layer MLG, with interlayer spacing 2 = 0.34 nm and
total length 2Ly. The bending stiffness of each layer is denoted as Q}, and the interlayer shear
modulus is u. For the nano-structural model, we make use of DFT-evaluated material properties,
Qp=1.0eV [8], and u=4GPa [31]. The continuum plate theories for SLG predict vanishing
bending modulus for vanishing thickness. However, the bending energy of SLG originates from
relative twisting and rotation of bond angles as well as w-orbital electron cloud shifting, and does
not vanish. This energy density is treated as 1/2 Quk? with « being the curvature. In addition, we
use the interatomic distance of the graphene atomic lattice, c =0.142 nm, the in-plane atomic-layer
elastic modulus, YP) = 2000 eV nm 2 [32] for dimensional analyses.

The symmetric shape of the crinkle is characterized by the angle 6(s) that it makes with
the horizontal and is parametrized by the arc length s. The entire assembly is under constraint
force f to maintain the applied lateral strain. The DFT results indicate that layers deform
nearly identically. Since the layers are held together by weak van der Waals forces, we assume
translational symmetry in the thickness direction. Owing to the high in-plane stiffness of
graphene, the layers are assumed to be inextensible. Under these kinematic assumptions, the
strain energy of the system has two contributions, namely the individual-layer bending of the
layers and the interlayer shear between them. The energy contribution from these sources is

given as
L (Q,N(do\*> uw(N—Ta_ ,
= == B P tan?0 |ds, 2.1

tm J_L(]( 2 <d5> T Y @1

where the first term represents the bending energy of the layers with the curvature, x =d6/ds,
and the second term the interlayer shear energy. The total potential energy of the system is then
given as

Lo

7 =Upm — J f(1 —cos0)ds, (2.2)

7L0
with the last term being the external potential energy of the compressive loading. From the
potential energy functional I7(f) of (2.2) with (2.1), the Euler-Lagrange equation can be readily
obtained for the energy minimizing shape 6(s),

QuN6"(s) — 1(N — 1)atan fsec®d + f sinf =0, (2.3)

for — Lo <s < Lo, where (A)" denotes dA/ds. The critical buckling load for end-angles prescribed
as + 6, at s ==L, predicted by this model is
72QN
fer = (N = 1)a + QZ . (2.4)
412

To give some perspective, we evaluate the critical load for a 100 nm long MLG specimen with
21 layers, and find that bending makes up less than 0.005% of the buckling load. The buckling
load is predominantly due to interlayer-shear resistance, and as the length of the layers increases,
the bending contribution vanishes.

To carry out the post-buckling analysis, we numerically minimize the potential energy.
Figure 2¢ shows the results for one such case with 2Lj=100nm and 21 layers. For small
end angle, the curvature is smoothly distributed over the entire length. As the end angle
increases, a progressive symmetric curvature localization occurs. The observed peak curvatures
are approximately 0.0067 nm ™! for a 3° end angle, which is much smaller than the DFT predictions
in §2b for the same end angles. This discrepancy is attributable to buckling of quantum-
flexoelectric dipole—dipole interactions at the nanoscale, which is not accounted for in the purely
mechanical model. The quantum flexoelectric effect is treated in depth in §3. In the meantime,
to understand the localization behaviour in greater detail, we investigate the band width of
curvature focusing given by the two symmetric inflection points of the curvature distribution.
For the three cases in figure 2¢, the band widths of curvature focusing are about 25.1, 12.4 and
10.22nm in ascending order of the end angles. These band widths are much larger, and change
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with the increasing end angle in contrast to DFT results where the band width of curvature
focusing is nearly fixed at 0.86nm. In the limit of very large Loy, two length scales remain in
the problem—the interlayer spacing a and another from bending stiffness and interlayer shear,
/Qp/na. The EBW of curvature focusing for small 6, and large Ly evolves with 6, as is evident
in figure 2e. From our numerical study this dependence of EBW is found to be ~ (7 /ZGE)JW,
where the constant 7 /2 is introduced to match the best fit curve. Consequently, the curvature
focusing observed here is achieved progressively and this mode is not an intrinsic hinge mode of
MLG buckling. The curvature localization arises from an energetic competition between bending
and interlayer shear energies, where the dominant buckling mechanism is interlayer shear, and
bending serves to regularize the localization. Although this purely mechanical model does not
completely capture the physics of crinkle formation, it does highlight one of the mechanisms of
curvature localization in MLG.

(c) Electro-mechanical coupling models of multi-layer graphene crinkles

In §2b we employed a purely mechanical model to study the post-buckling evolution of MLG
crinkles and showed that the interplay of interlayer shear and bending energies provides
one mechanism of supercritical crinkle formation. Still there are discrepancies between the
mechanical model results and DFT predictions. Buckling of MLG creates a strain gradient, i.e.
bending curvature of the layers, which breaks the symmetry in the electron cloud distribution
in graphene. This separation of positive and negative charge centres in graphene produces
a net polarization distribution across the layer. This phenomenon, also known as quantum
flexoelectricity, is particularly strong in MLG, and a purely mechanical formulation is not able to
capture this effect. For a non-piezoelectric flexoelectric material such as graphene, the combined
effect of dielectricity and flexoelectricity on polarization, P;, is given by the following relation,

Pi=ajiEj + Bijia(Ve)jui, (2.5)

where «; is the atomic polarizability tensor, E; is the local electric field component, By is the
flexoelectric tensor and ¢ is the strain [33].

As discussed in the Introduction, graphene is statically dielectric and flexoelectric in the
direction normal to the lattice layer, and (2.5) for graphene is reduced to

P=aE + Bk, (2.6)

where P and E are, respectively, the polarization density and the electric field in the normal
direction, while & and By, are the atomic dielectric polarizability and the intrinsic flexoelectric
constant for N layer graphene, respectively. The atomic dielectric polarizability « is given
by, « = x/(x + 1)eoh, with the electric susceptibility x, the electric permittivity in vacuum €g
(=8.854 x 10712 Fm™1), and the effective dielectric thickness of graphene /, based on the atomic
polarization model of [24]. The values of x =5.9 and /1 =0.22 nm were obtained by DFT in [25].
Regarding flexoelectricity, we employ, in this paper, a further simplified model of local coupling
between E and «, in which the electric field E induced by layer-bending is effectively proportional
to the curvature « such that

P= B, 2.7)

where By, is the effective flexoelectric constant of N-layer MLG. The highly localized curvature
distribution in MLG crinkles allows us to reduce (2.6) to an effective-locality (e-locality) constitutive
relationship of flexoelectricity. The function /3(*1\]) / /3((1”; ) B1 — Boe B3N is obtained by best-fitting a
single case (6. = 3°) of our e-locality model results to the corresponding DFT results for various
N-layered MLGs. The coefficients (B1, By, B3) are found to be (7.235, 6.841, 0.1377), and the
effective flexoelectric constant for a uniform curvature distribution of SLG is given as ,88’; ) =0.11e
by DFT calculation performed in [27].
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Electrostatic interactions among the polarized dipoles in the graphene layers provide an
energetic contribution to the potential energy. The kinematic assumptions of MLG deformation
remain the same as in the purely mechanical model of the previous section. Then, the electrostatic
interaction energy is expressed as

uelec =

_ﬂ*Z
@) ds;, ds,,
)

N n L / / /
0 {1 — 8nq(sn, s"n) HA(sn,8"m) + B( 51, 8'm)}
|

Kk (Sn)k (S,m)
2me Lo [(x(5n) — X(5'm)12 + {y(5n) — Y& )T

n=1m=1

(2.8)
A(5n, };) = 0s{8(sn) + O(sp)H[—{x(sn) — X)) + {y(sn) — (S,
B(sn, S;n) =2sin{0(sy) + 9(5;,1)} Ax(sn) — x(s/m)}{]/(sn) - ]/(sin)}

and g(sn, 5'n) = {1/2 for |s;, — 'y > 10 /

1, for|sy —s'u|<ro
where rq is the cut-off radius of the interaction integration and m, n are indices for the layers
for which interactions are considered. Here, €(y) is the average electric permittivity of N-layered
MLG in the normal direction to the layers. Local electric permittivity is layer-position dependent
in general [26]; however, we employ the average value for every layer as an approximation for
our kinematic assumptions of MLG deformation.

As commonly treated in long-range interactions among singular-field sources, we account for
the intralayer dipole-dipole interaction with a cut-off radius. While performing the integration
in (2.8), we omit a small symmetric region around the dipole. The way of using cut-off radius
to circumvent singularity issues has a physical reasoning behind it. In atomically thin layered
materials, the dipoles are not distributed continuously but separated approximately by the lattice
parameter distance (nearest neighbours), and thus avoid singularities. Our choice of cut-off radius
approximately 0.15nm is approximately the same as the lattice parameter. Within the cut-off
radius, the energy required to uniformly bend graphene is already accounted for in the bending
energy, 1/2Qp«?. The bending stiffness value used in the calculations has been obtained from
DEFT analysis to delineate the bending stiffness from the effect of dipole-dipole interactions.

Augmenting the purely mechanical model with the flexoelectric interaction energy, the total
potential energy is formulated as

Lo 2 _
H:J %<%) + Mtanzé —f(1 —cos @) |ds + Uglec (2.9)
—Lo 2 ds 2

Again, we numerically minimize /7(0) to get the lowest energy configuration of MLG. Figure 2f
shows the curvature distributions (refer to the left and bottom axes) for different end angles for a
15nm long, 21-layered MLG. The curvature distribution is highly localized in an approximately
2nm band and the peak is much larger compared to the purely mechanical model predictions. The
curvature distribution also shows a reversal region, which was absent in the purely mechanical
model but predicted by the DFT. Another point of difference between the two models is the
boundary layer characterized by the band width of curvature focusing. The e-locality model
predicts the 0.86nm FBW of curvature focusing as shown in figure 2f (refer to the right and
top axes) in contrast to the EBW exhibited by the purely mechanical sandwich structure model.
The much smaller boundary layer is a result of a new length scale in the problem arising
from the introduction of flexoelectricity. Once we nondimensionalize (2.9), we have another
nondimensionalized quantum-flexoelectric crinkle parameter, waQpen)/ ﬂ(*l\zl), in addition to the

purely mechanical crinkle parameter, (7/2a6,),/Qp/na, introduced in §2b. Dependence of (2.9)
on the quantum-flexoelectric crinkle parameter implies that the energetic competition between
flexoelectricity and layer bending yields a band width scaling as ~ wa*Qpe()/ ,3(’;\2,), such that
higher bending stiffness implies wider band width and higher flexoelectric constant implies
narrower width.
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3. Analysis of crinkle curvature localization and amplification in graphene

The electromechanical model employing our e-locality constitutive relationship of flexoelectricity,
assuming local coupling between E and «, shows all the qualitative features of flexoelectric crinkle
as predicted by DFT. In this section, we take a deeper look at the quantitative features of the
different models.

(a) Post-buckling characteristics of flexoelectric graphene crinkle

Figure 3a shows a comparison of the peak curvature variation versus the kink angle among the
DFT, the e-local flexoelectric and the mechanical sandwich structure models. The length of our
21-layer MLG is chosen to be 2Ly =15nm for both purely-mechanical and flexoelectric models.
All three models predict a linear variation of the peak curvature with respect to the kink angle
in the post-buckling configuration. Defining the slope of the linear variation as the ‘curvature
focusing factor’, the DFT and the flexoelectric models both predict a curvature focusing factor
of approximately 0.052nm~! degree™!. This is more than 20 times that of the purely mechanical
sandwich structure model, approximately 0.0023nm~! degree™! shown in figure 2e. Thus, the
long range dipole-dipole interactions in the flexoelectric layers enhance the curvature focusing
more than 20 times. In comparison, the curvature focusing factor for 15nm long MLG shown in
figure 3a is approximately 0.004 nm~"! degree ™!, because the length of the MLG is shorter than the
mechanical boundary layer width.

Figure 3b exhibits the constraint force normalized by the critical load of pure-shear buckling,
20pa for our 21-layer MLG model, to keep the end (or kink) angle in the post-buckling
configuration, for two different models. One is for the purely mechanical sandwich structure
model, the black curve, and the other for the e-local flexoelectric model, the blue curve. These two
models match up those of figure 3a for 2Ly = 15 nm. The result of the purely mechanical sandwich
structure model corresponds to the constraint force for the interlayer-shear-mode buckling. The
interlayer-shear mode of buckling is well known to be supercritical and progressive, and the
constraint force versus end angle plot shows a quadratic dependence at the small-angle range.
The critical load of the purely mechanical interlayer-shear-mode bifurcation is about 0.53% higher
than 20 pa due to finite-length effect of using 2Ly =15nm specimen. On the other hand, the
critical load for flexoelectric crinkle formation (the blue dashed curve in figure 3b) is about 0.48%
higher than 20 pa, which is lower than the critical load of purely mechanical buckling. The e-local
model predicts that with respect to perturbations of complex harmonic modes, the bifurcation is
subcritical and the constraint-force should jump to the stable branch of the crinkle post-buckling
evolution, shown in blue, in figure 3b.

(b) Complex harmonic bifurcation analysis of critical multi-layer graphene buckling

In this sub-section, we perform a linear bifurcation analysis with the e-locality model formulated
in §2c. From the full energy expression (2.8), we invoke the linearized small-angle approximation
and obtain the following Euler-Lagrange equation for the system,

" ﬂ(*l\zj) LO / /
QUNO() + 1 = e = Do) + - [ 0/ egp & ~ 11 de =0, 61
TEN) J-Lo

for — Lo <s <Ly, where go(x —§) is the dipole-dipole interaction kernel that depends on the
number of layers N and the geometry. It excludes |£ — x| < g for intralayer interactions with rg
the cut-off radius. Now, we look for nontrivial solutions for the above equation for the bifurcation
analysis. To this end, we apply the Fourier transformation,

b(k) = f e g (x) dx, (3.2)
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to (3.1) with i the unit imaginary number, and obtain,

*2

a2 RSN A aa
fonN=1a—k QN v ) F8 =G E:Pé =0, (3.3)

7T€(N)

PS008107 0L ¥ 205§ 20ig BioBuiysigndiaposieforeds;



where @ is the Fourier transformation of the function {6(x) for |x| <Lg, and 0(x)=6(Lo) for
Lo <| x|}, and k =ak andf =f/{ (N — 1)ua} denote non-dimensionalized wavenumber and non-
dimensionalized constraint force, respectively. For nontrivial solutions of 6, we must satisfy
Gk f)=0.

Here, we evaluate the critical complex-harmonic buckling load of a bilayer (N =2) graphene to
get physical insight of curvature localization at the onset of bifurcation without loss of generality.
For the bilayer model, the kernel g()(§ — x) is given as

_ G-t 2(1— g, )
(-2 +a2) -7

g¢E —x) , (3.4)
where the first term comes from interlayer interactions while the second term arises from
intralayer interactions. The Fourier transform of g(3), using the definition in (3.2), is calculated

to be
2 cos krg

(k) = [kle™™ + 7 |k| — 2KkSi(kro) — (3.5)

ro
Complex solutions of Gy (k;f) =0, given by splitting the equation into real and imaginary parts,
for k=11 + iv, yield

Gy (k:f) = Ry (@, 0 ) + i) (it, 9) = 0. (3.6)

Equation (3.6) shows that the imaginary-part solution, I((it, ) =0, does not depend on the
constraint force, f, and is plotted as red curves on the (i, v) plane in figure 3c, for a bilayer
graphene. On the other hand, the real-part solution, R (i, 7; f ) =0, depends on f, and is plotted
for different values of f with various coloured curves. Intersection points between the red curve
and other coloured curves represent the admissible complex wavenumbers corresponding to
different values of f. The intersection points in figure 3¢ reveal one real (i = 0) and two complex
conjugate (¥ # 0 with same i) roots of (3.6).

Since the solution of (3.6) should trace the red curves in figure 3¢, the red curves represent the
fundamental solution branch of bilayer graphene buckling obtained by the complex harmonic
analysis. The red line of the real root (v =0) shows the fundamental solution branch for
sinusoidal buckling modes. Along this line, admissible buckling modes and corresponding
loads are determined by the boundary conditions, similar to the pitchfork bifurcation in Euler
column buckling. On the other hand, the complex conjugate roots represent the critical quantum
flexoelectric buckling mode, 8 ~ (A1e"* + Aze™") sin ux, at the nanoscale. For a long span (Lo >> a)
of the bilayer graphene, A1 /A, vanishes to satisfy the end condition, & — 0 at x = L for this mode.
In figure 3c, three complex-conjugate root sets, (i1, ) = (3.385,4.410), (3.317,4.426), (3.214, 4.441),
are displayed for three buckling loads, f = 1.015,2.941,5.882. The results show that the critical
wavenumber and the decay length of the critical quantum flexoelectric buckling mode hardly
change with variation of the critical buckling load f. However, the critical wave length,
approximately 0.63nm, and the critical decay length, approximately 0.48nm, for f ~1.015 are
somewhat shorter than those of the post-buckling mode observed in the crinkle ridge boundary
layer. It is believed that at the onset of buckling the long-wavelength harmonic mode and the
quantum flexoelectric crinkle mode are concurrently activated at the critical load. Then, the
critical onset mode jumps to the subcritical post-buckling mode of two straight crinkle wings
linked by the curvature focusing boundary layer, adjusting the wavelength and the decay length
of curvature distribution. Our parameter study shows that the complex conjugate roots only
exist for the quantum flexoelectric crinkle parameter in the range of 1.01 < maQpe(z)/ ,3(*22) < 31.6.
When the value approaches 1.01, the mode becomes harmonic with its wavenumber close to that
of the graphene lattice, indicating the trend of spontaneous phase transition from sp, to spz. On
the other hand, when the parameter value exceeds 31.6, the flexoelectric constant is too small to
excite the quantum flexoelectric buckling; it can only support the long-wavelength buckling. The
bilayer graphene has the value 3.48, indicating that graphene is an ideal material to form quantum
flexoelectric crinkles.
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(c) Mechanisms of curvature localization in graphene

So far, our energy minimization and bifurcation analyses of the e-local model for flexoelectricity
predict the formation of flexoelectric crinkles and the results are in good agreement with the DFT
findings. We now take a close look at the energetic interplay that leads to curvature localization
in both purely mechanical and electromechanical buckling.

In the purely mechanical model, in the absence of any bending rigidity, a perfectly sharp
mathematical kink is the energy minimizing solution that satisfies the boundary conditions.
However, with a non-zero bending rigidity, there is an energy competition between interlayer-
shear and layer-bending modes. A larger boundary layer allows reduction in the shear energy,
which primarily comes from the straight sections of the shape. Thus, we see a smoothly
distributed curvature over the length of the sample. However, we would like to point out here
that even the purely mechanical model shows non-negligible amount of curvature amplification
for small values of Qp,/ ua® as shown in figure 3¢, but for the material properties of graphene, this
effect is not significant.

As discussed in the Introduction, long range nonlocal flexoelectric interactions in the model
allow for significant energy variations, especially reduction of energy through attractive dipole—
dipole interactions. The curvature reversal exhibited by the flexoelectric crinkle plays the key role
in the energy reduction in the e-local model. Since we employ local coupling in the constitutive
relationship, reversal of curvature also implies reversal of polarization. Figure 3f shows the
schematic of dipole-dipole interactions. There are two types of dipole—dipole interactions—
interlayer and intralayer. Interlayer interactions among the dipoles present in the red region are
attractive and lower the potential energy. The presence of multiple layers increases the energetic
favourability of crinkle formation. Since the crinkle curvature and hence polarization are highly
localized, all the interaction is within the shaded (red) region in figure 3f.

Intralayer interactions are repulsive for parallel and attractive for anti-parallel dipoles, which
is the primary reason why crinkles display the characteristic curvature reversal. The curvature
reversal leads to reversal of polarization, and thus the strong attractive intralayer interactions
reduce the total energy. This explains the origin of the FBW of curvature focusing. The electrical
interaction keeps reducing the potential energy as the boundary layer becomes smaller and
smaller. Thus, at the onset of bifurcation there is a spontaneous reduction of boundary layer width
which is impeded only by the non-vanishing bending rigidity of graphene. This competition
between bending energy and flexoelectric energy gives rise to a boundary layer, substantially
smaller than the purely mechanical boundary layer (approx. 2nm compared to approx. 50 nm).
The two mechanisms of curvature focusing work together for flexoelectric crinkles. The energetic
competition between layer-bending energy and interlayer-shear energy provides a macroscopic
broad-band focusing, while the competition between layer-bending and flexoelectric energy gives
a much narrower FBW of curvature focusing and much larger curvature amplification.

4. Discussion

(a) Reduced couplings of flexoelectricity and dielectricity

It is a pleasant surprise that a simple e-local flexoelectric polarization model, (2.7), can capture
the major characteristics of critical curvature localization in graphene predicted by DFT analysis.
Since E in (2.6) is a point-exclusive external electric field, the electric field is generated by all other
dipoles distributed in the entire MLG except for the dipole within the cut-off radius, and thus
the polarization is inherently nonlocal. However, we lumped the contribution of the nonlocal
dielectric interaction term in (2.6) into a single e-local flexoelectric constant ﬂ(*N) in (2.7). This
lumping for “uniform curvature distribution” in SLG provides the uc-local polarization constant,
ﬂ((i‘)c ) =0.11e, reported in [27]. Similar to electric permittivity, €y, the uc-local polarization

constant, ﬁ((;\lf)), is layer-number, N, dependent, and ﬂ((glc)) ~0.718¢, for example. In contrast, a
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crinkle has a non-uniform curvature distribution, and we obtain a slightly larger value of the
e-local flexoelectric constant, ﬂ(*ﬂ) =(.745¢, by best-fitting the 3°-crinkle curvature distribution
predicted by the e-local model to that of the DFT analysis. The value, /3(*21) =0.745¢, is MLG crinkle
specific. In general, the reduced flexoelectric model, from (o), B)) to (ﬂ(*N)), is not applicable
to solve non-uniform curvature problems. However, the peculiar characteristics of the localized
curvature distribution, «(x, 6¢) =6c¥(x), in the nanoscale MLG crinkle boundary layer allows
us to use the reduced effective flexoelectric constant, where y(x) is the universal shape function
of the crinkle. In the crinkle boundary layer, the antiparallel flexoelectric dipoles in mutually
opposite curvature distributions enhance the additional point-exclusive dielectric polarizations.
Furthermore, FBW of the boundary layer makes the dielectric polarizations also proportional
to the curvature. These two effects make the effective flexoelectric constant ﬂz"mlarger than
the intrinsic flexoelectric constant, B(1)=0.726e. In contrast, flexoelectric dipoles of uniform
curvature distribution are parallel to each other and hence the dielectric polarizations are induced
in the opposite direction to the flexoelectric dipoles. Therefore, ﬁ((lb\lf)) is smaller than fyy. In other
words, the net polarization is amplified by dielectricity from the intrinsic flexoelectric polarization
in MLG crinkles, and is reduced in uniformly curved MLGs. Although a three-dimensional (3D)-
continuum electromechanical constitutive relation in the entire space can be made in a unified
manner with thermodynamic representation [34,35], 3D-continuum kinematics cannot effectively
follow the deformation of layered structures of inextensible 2D materials. The e-local modelling
is found effective in accounting energetics for MLG crinkle deformations. A comparison of the
results using ﬁ((f)c ) with those using /3(*21) is provided in appendix B.

(b) Critical constraint force and the post-buckling mode of multi-layer graphene

For a quantitative assessment of post-buckling behaviour of MLG, we consider the lowest
admissible critical load f () of sinusoidal interlayer-shear-mode buckling, from (3.3), for a bilayer
(N =2) graphene of length 2Ly =15nm,

kz ﬂ*Z .
fo=1+72 (ZQh -2l (4.1)

7TE(2)

which evaluates to ]?(2) =1.0164 for k=7 /15nm™ !, ua=1.36Nm~!, Q,=1eV, and ﬁaz)g(z)(k)/
meg =—1.175eV. A negative /3("‘22)35(2) (k)/mep implies that the intralayer flexoelectric dipole—dipole
interaction of parallel dipoles effectively increase the bending rigidity.

The critical load for the purely mechanical model evaluates to f(z) =1.0103, which is higher
than the lowest post-buckling load of crinkle as seen in figure 3b. This result indicates that the
fundamental state bifurcates at ]?(2) =1.0164 with a sinusoidal mode which together with the
quantum-flexoelectric buckling mode triggers cascading bifurcations of higher orders. These
bifurcation events reduce the load to the lowest post-buckling load of crinkle, becoming a
subcritical harmonic bifurcation. Once the flexoelectric crinkle is formed at an infinitesimal end
angle, subsequent post-buckling load increases with growing end angle, and all the crinkle modes
remain identical. The post-buckling mode of the flexoelectric crinkle, 8’ ~ sin(kgpw)x)/x within
the boundary layer, ensures the characteristics of FBW curvature focusing. If 8* is set to zero, i.e.
no flexoelectricity, we recover the purely mechanical supercritical bifurcation and the boundary
layer exhibits characteristics of EBW curvature focusing.

A similar phenomenon of subcritical harmonic bifurcation with the invariance of post-
bifurcation mode starting at a lower load was previously discovered for the case of creasing in
a neo-Hookean solid surface under lateral plane-strain compression [36-39]. For creasing, this
mode is singular. The singular crease field was introduced by the cascading subcritical higher-
order harmonic bifurcations [18] at the critical compressive strain for harmonic bifurcation [37],
called the Biot strain, 0.46 [40]. Alternatively, it could be also introduced by singular perturbation
[38] such that the crease initiated at a compressive strain of 0.35, which is smaller than the Biot
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Figure 4. (a) Qualitative plot of atomic polarization for a cross section of flexoelectric crinkle from DFT analysis; (b) a schematic
of electron cloud distortion in bent graphene leading to polarization i.e. quantum flexoelectricity; (c) polarization density for
21-layered, 15 nm MLG predicted by e-local model. (Online version in colour.)

strain. For both flexoelectric crinkle and crease cases, the mode grows self-similarly, unlike the
progressive growth observed in the supercritical buckling of purely mechanical models.

(c) Crinkle flexoelectric polarization and potential applications

The critical curvature localization in MLG amplifies the peak curvature by two orders of
magnitude from that of an equivalent sinusoidal wrinkle to within 0.86nm FBW for a typical
span of the MLG layers, for instance, 2Ly =100nm in figure 2¢. For example, the case of a
wrinkle with 3° end angle for 2Ly =100nm has its peak curvature of 0.0016nm~!, while the
equivalent purely mechanical crinkle amplifies this to 0.0068 nm~!, and the flexoelectric crinkle
to 0.16nm~1. The amplification factor is proportional to Lg. An important feature of the MLG
crinkle is the development of highly concentrated flexoelectric polarization along the crinkle
ridges and valleys. Figure 4a shows the DFT-evaluated flexoelectrically polarized dipoles of
specific atoms on a cross section of the crinkle. Note the localization and reversal of polarization.
As the curvature decays, the polarization also vanishes away from the crinkle ridge. Figure 4b
highlights the mechanism of intrinsic flexoelectric polarization, where bending leads to 7 electron
cloud shift (in blue) that produces the polarization. The intrinsic flexoelectric polarization further
induces additional dielectric polarization. As we obtained in 3.1, the curvature focusing factor
for flexoelectric crinkle was 0.052nm~"! degree™!, and this large curvature amplification indeed
produces a significant net polarization density with peak values reaching 0.12 enm™! for a 3° kink
angle as shown in figure 4c.

Curvature localization and amplification lead to development of surface electric-charge
concentration in the FBW along the crinkle ridges and valleys on the top and bottom free surfaces
of MLG. The surface electric charges are negative on the tops of ridges and positive on the
bottoms of valleys. This yields a nanoscale line charge, focused in a 0.86nm band, and the
intensity of the charge concentration can be regulated by controlling the end angle or the level
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of compression. We posit that the effects of the crinkle-induced surface line charges have been
indirectly observed in literature [41,42]. For instance, DNA molecules are adsorbed along well-
ordered lines [41], and Cgo Buckyballs line up in a regular pattern [40] on HOPG surfaces. We
believe that these previously unexplained observations are caused by the presence of flexoelectric
line charges resulting from crinkles. HOPG contains naturally existing flexoelectric crinkles along
the domain boundaries of the mosaics [7] as discussed in the Introduction. The HOPG crinkle
networks are likely generated by inhomogeneous stress fields due to defects introduced during
the manufacturing process. DNA molecules are negatively charged, and the DNA molecules
are likely adsorbed along the troughs of the crinkle valleys [41]. A straightforward energy
minimization calculation accounting for the interactions among the crinkle line charge and the
dielectric charges of the Buckyballs shows that the optimal distance between the Buckyballs
should be about 2nm, which is close to the experimentally observed spacing [42]. Typical
interaction potential depth between the crinkle line charge and charged molecules or large
neutral molecules (or nanoparticles) are much deeper than the Boltzmann activation energy,
kT =25.7meV, at room temperature, T =298K. Therefore, we expect that flexoelectric crinkles
will be useful in studying self-organizing molecular adsorption for various applications. Besides
the potential applications of flexoelectric crinkle charges in adsorption problems, the kinematics
and energetics of flexoelectric crinkles can provide new insight on dynamic ripple characteristics
in graphene [1]. As DFT analysis reveals that SLG crinkle is a metastable configuration for
2Ly =13.26, the crinkle mode can develop a characteristic phonon mode of ripples in graphene
other than the sinusoidal mode, for wavelengths of 4Ly < 26.5nm, and dynamic mode hopping
in different modes can play a significant role in thermodynamic energy partitioning and phonon
transfer.

5. Conclusion

Here we highlight our new discoveries regarding MLG crinkles:

1. We constructed the MLG phase map of wrinkle versus crinkle. The crinkle phase is
more stable than a wrinkle phase for 2Lg <13.9N,/(N + 1/N)a, where 2Ly, N and a
are the whole span, number of layers and the interlayer spacing of a buckling MLG
correspondingly.

2. Our DFT analyses reveal that the curvature of the MLG crinkle ridge (or valley) is
localized and highly focused within an approximately 0.86 nm wide band. The curvature
reaches a peak of approximately 0.15nm ™! for a 3° kink angle, and the curvature vanishes
outside of the approximately 2 nm wide boundary layer.

3. We find that a mechanical model of MLG under axial compression undergoes a
supercritical interlayer-shear-mode buckling to progressively evolve into a crinkle with
its curvature localized within a much broader band than those of DFT predictions. The
curvature focusing factor, approximately 0.0023 nm~! degree™!, of the purely mechanical
model is much weaker than the DFT prediction, approximately 0.052 nm™! degreefl.
Nevertheless, this long-wavelength mechanical buckling mechanism cooperatively
drives MLG crinkle formation with buckling of quantum-flexoelectric dipole-dipole
interactions at the nanoscale. The width of the mechanical crinkle is found to be scaled
by the mechanical crinkle parameter, (7/2a6.)/Qp/na.

4. Our post-buckling analyses of crinkle reveal that long-range non-local electromechanical
interactions in MLG promote concurrent quantum flexoelectric buckling of the
interactions at the nanoscale, in addition to the long-wavelength purely-mechanical
buckling. The attractive interlayer and intralayer interactions among the electric-charge
dipoles, generated by flexoelectricity, lower the total potential energy.

5. For an effective crinkle analysis, we formulate an e-local model for graphene
flexoelectricity by lumping together the dielectric and flexoelectric interactions in MLG.
The e-local model is calibrated with the DFT results to calculate the effective flexoelectric
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coefficient /3(*21) =0.745e which is found to be higher than the uc-local polarization

constant, ,8((;4; ) =0.11e, obtained by uniform bending DFT analysis [22].

6. Our e-local model results of flexoelectricity capture the signatures of the crinkles, i.e.
curvature focusing, curvature reversal and FBW characteristics observed in the DFT
analyses. The peak curvature of ~ 0.16nm~! for 3° end angle and curvature focusing
factor of approximately 0.052nm~! degree™! are in good agreement with DFT results
and are significantly higher than the purely mechanical model.

7. Accounting for flexoelectricity, our linear bifurcation analysis of the e-local model shows
that the bifurcation is subcritical with respect to perturbations of complex harmonic
modes and happens at a higher critical load of ]?(2) =1.0164 than the load of purely
mechanical model, f(g‘)ed‘ =1.0103.

8. Our bifurcation analyses reveal existence of two concurrent hierarchical modes of MLG
buckling at the onset of buckling. One is a long-wavelength harmonic bifurcation mode,
and the other the quantum flexoelectric crinkle mode near the lattice scale. The two
modes at the onset of bifurcation lead to the post-buckling crinkle mode of high curvature
localization and focusing at the crinkle ridge (or valley) tips.

9. We have uncovered that the quantum flexoelectric crinkle can be formed only if the
quantum flexoelectric crinkle parameter is in the range of 1.01 < waQye()/ B*2 <31.6.
If the parameter value is close to 1.01, the MLG is likely to make spontaneous phase
transition from a spy to a sp3 structure. On the other hand, if the parameter value is
beyond 31.6, the MLG harmonically buckles only with a long wavelength. The quantum
flexoelectric crinkle parameter of a bilayer graphene is 3.48, and MLG is found to be an
ideal material to form quantum flexoelectric crinkles.

10. The large curvature focusing leads to segregation of charges on the outer surfaces of
MLG which are confined within the boundary layer. The polarization density reaches
up to 0.12e"nm~! for a 3° kink angle. This effectively produces a line charge, the
magnitude of which can be manipulated by macroscopic deformation. Fine control
of this class of surface feature with quantum-flexoelectric charge concentration can
be a powerful tool to study selective graphene-surface functionalization, molecular
adsorption, self-organization of molecular and other nanoscale electrosensitive systems.

Data accessibility. This article has no additional data.

Authors” contributions. M.K. and K.S.K. conceived and implemented the mathematical model, interpreted the
results and drafted the manuscript. M.H.C. carried out the DFT analysis. K.S.K. supervised the work. All
authors gave final approval for the publication.

Competing interests. We have no competing interests.

Funding. This work was supported by the U.S. National Science Foundation (awards CMMI-1462785 and
1563591) for the experimental study & the theoretical modelling by M.K. and K.SK., and (awards DMR-
0520651 and XSEDE) for the DFT analysis by M.H.C. and K.S.K.

Acknowledgements. Valuable discussions with AK Landauer are gratefully acknowledged.

Appendix A. Phase map analysis of multi-layer graphene

To delineate the different modalities of deformation we construct the phase map as shown
in figure 1d by comparing the critical load of crinkle versus wrinkle formation for N-layered
sandwich structures.

Employing the notation in §2b, the potential energy for the wrinkle mode arising from bending
and compression/extension of layers is given as

L yep) ((ND/2 Lo
S &2 ds—fJ (1 —cos)ds, (A1)
2 1, 2 - L

Lo
11 overall = N J
=1

ds +2J
Ly

where &, = £mak represents the strain in the mth layer away from the central layer by distance
ma and N is odd.
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Figure 5. Curvature distributions near a crinkle ridge of 21-layer MLG predicted by 21-layer e-local (blue) and single-layer uc-
local (red) flexoelectric models; 2Ly = 15 nm. (Online version in colour.)

From (A.1), the critical buckling load for end angles prescribed as 6(+Lg) = %6, is calculated
to be,
(wrinkle) _ 2 QpN

cr

y(@D)
> + 1 ——=a*N(N* - 1). (A2)
4L 4815

Expression of (A 2) is found to be the same for even number of layers.
In contrast to the wrinkling, the critical buckling load for mechanical crinkle, as already
discussed in §2b, is given as,

(mech. crinkle) 2

b
cr =u(N —1)a+ ijN- (A3)
4L

For the mechanical crinkle to be favourable over wrinkle, in the parameter space of Ly and N, we
must have fc(rmech. crinkle) < fc(rwrmkle)' This gives,

Y2D)g /N +1
2L N —, A4
=N ( : ) (A)
and for MLG material properties,
N+1
2Ly <139N ( 1—\'1_ )u, (A5)

which is the blue curve in figure 1d. The asymptotic limit of large N is marked by broken
orange curve. The critical load for flexoelectric crinkle formation is found to be even lower than
mechanical crinkle formation as discussed in §3. Thus, the phase boundary presented in figure 1d
is referred to as a lower bound for flexoelectric crinkle formation.

Appendix B. Comparison of e-local and uc-local model predictions

Figure 5 shows the comparison of curvature distribution predicted by the two different models:
the uc-local model (red curve) and the e-local model (blue curve). The former uses (}1 9 —0.11e
obtained from uniform bending DFT study [22] while the latter employs B, ~ 0.745¢ which was
obtained by calibrating a single case (3°) to our DFT results for highly non-uniform bending of
MLG. The pronounced differences in distribution indicate that ﬂ(qd © cannot be directly used for
non-uniform curvature distribution because non-local coupling effects of dielectricity and electric
field become significant.
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